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Section 1

Higher Stationary Reflection
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Stationary Reflection Principle

Definition (Stationary Reflection)

Let SRω1 be the following stationary reflection principle:

For any set W ⊇ ω1 and any stationary X ⊆ Pω1(W ),
there is R ⊆ W such that

|R| = ω1 ⊆ R,
X ∩ Pω1(R) is stationary in Pω1(R).

SRω1 is often called the Weak Reflection Principle (WRP).

Theorem (Foreman-Magidor-Shelah)
1 SRω1 holds if a supercompact cardinal is Lévy collapsed to ω2.

2 Martin’s Maximum implies SRω1 .
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Consequences of SRω1

SRω1 is known to have many interesting consequences.

Theorem ((1)–(3) Foreman-Magidor-Shelah, (4) Todorčević, (5) Shelah)

SRω1 implies the following.

1 Chang’s Conjecture

2 NSω1 is presaturated.

3 All ω1-stationary preserving posets are semi-proper.

4 2ω ≤ ω2.

5 Singular Cardinal Hypothesis (SCH)

6 λω = λ for any regular λ ≥ ω2.

We study consequences on cardinal arithmetic of higher analogues of SRω1 .
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Inconsistent Higher Stationary Reflection

Definition
For a regular κ ≥ ω1, let SRκ be the following stationary reflection principle:

For any set W ⊇ κ and any stationary X ⊆ Pκ(W ),
there is R ⊆ W such that

|R| = κ ⊆ R,
X ∩ Pκ(R) is stationary in Pκ(R).

SRκ is inconisistent for κ > ω1.

Theorem (Feng-Magidor, Foreman-Magidor, Shelah-Shioya)

SRκ fails for any regular cardinal κ > ω1.

On the other hand, the restriction of SRκ to stationary sets consisting of
internally approachable sets is consistent.
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Internally Approachable Sets

Definition (Internally approachable sets)

Let M be a set and ρ be a regular cardinal.

For a limit ordinal ζ, M is internally approachable (i.a.) of length ζ if
there is a ⊆-increasing sequence ⟨Mξ | ξ < ζ⟩ such that

▶
∪

ξ<ζ Mξ = M,
▶ ⟨Mξ | ξ < ζ′⟩ ∈ M for all ζ′ < ζ.

M is i.a. if M is i.a. of length ζ for some ζ.

M is i.a. of cofinality ρ if M is i.a. of length ζ for some ζ with cof(ζ) = ρ.

Definition

IA := {M | M is i.a.}.
IAω := {M | M is i.a. of cofinality ω}.
IA>ω := {M | M is i.a. of cofinality > ω}.

IAω and IA>ω is somewhat similar to Cof(ω) and Cof(> ω), respectively.
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Stationarity of IA

Fact
Suppose κ is a regular uncountable cardinal, and λ is a regular cardinal ≥ κ.

Pκ(Hλ) ∩ IA is stationary in Pκ(Hλ).

Pω1(Hλ) ∩ IAω is club in Pω1(Hλ).

If κ > ω1, then Pκ(Hλ) ∩ IA>ω is stationary in Pκ(Hλ).

If κ > ω1, then Pκ(Hλ) \ IA is stationary.

H. Sakai (Kobe) Higher Stationary Reflection and Cardinal Arithmetic RIMS Set Theory 2020 7 / 20



Restriction of Higher Stationary Reflection to IA

Let C be one of IA, IAω and IA>ω.

Definition
For a regular κ ≥ ω1, let SRκ ↾ C be the following:

For any regular λ ≥ κ and any stationary X ⊆ Pκ(Hλ)∩C,
there is R ⊆ Hλ such that

|R| = κ ⊆ R,
X ∩ Pκ(R) is stationary in Pκ(R).

Definition

For a regular κ ≥ ω1, let SR
∗
κ ↾ C be the following:

For any regular λ ≥ κ and any stationary X ⊆ Pκ(Hλ)∩C,
there is R ⊆ Hλ such that

|R| = κ ⊆ R, and R is i.a. of length κ,
X ∩ Pκ(R) is stationary in Pκ(R).
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Basic facts

Fact
1 SRκ ↾ IA ⇔ SRκ ↾ IAω ∧ SRκ ↾ IA>ω. (The same holds for ∗-versions.)
2 SRω1 ⇔ SRω1 ↾ IA.

Theorem (Foreman-Magidor-Shelah)

For a regular uncountable cardinal κ, if a supercompact cardinal > κ is Lévy
collapsed to κ+, then SR∗

κ ↾ IA holds.

H. Sakai (Kobe) Higher Stationary Reflection and Cardinal Arithmetic RIMS Set Theory 2020 9 / 20



We study consequences of these higher stationary reflection principles on cardinal
arithmetic.
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Section 2

Higher Stationary Reflection and Cardinal Arithmetic
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Power of ω and Question

Recall that SRω1 implies that λω = λ for all regular cardinal ≥ ω2.

By the same argument, we can prove the following.

Theorem 1
Let κ be a regular uncountable cardinal.
Then SRκ ↾ IAω implies that λω = λ for all regular λ ≥ κ+ (so 2ω ≤ κ+, and
SCH holds above κ).

Question
1 Does SRκ ↾ IA give any bound on 2µ for an uncountable µ?

2 Does SRκ ↾ IA>ω give any bound on 2ω?

3 Does SRκ ↾ IA>ω imply SCH?

We give negative answers to all these questions.
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SRκ ↾ IA>ω and 2ω

Question
Does SRκ ↾ IA>ω give any bound on 2ω?

Answer is NO. In fact, SR∗
κ ↾ IA>ω does not give any bound:

For a regular cardinal µ and ν ∈ On, Add(µ, ν) is the < µ-closed poset adding
ν-many subsets of µ, i.e. a < µ-support product of ν-many copies of <µ2.

Theorem 2

Suppose κ is a regular cardinal > ω1, and SR∗
κ ↾ IA>ω holds. Let ν ∈ On.

Then SR∗
κ ↾ IA>ω remains to hold in VAdd(ω,ν).

H. Sakai (Kobe) Higher Stationary Reflection and Cardinal Arithmetic RIMS Set Theory 2020 13 / 20



Key Lemma for Theorem 2

One difficulty to prove the preservation of SR arises from the fact that Pκ(W )
changes after forcing. The following lemma allows us to avoid this difficulty.

Key Lemma

Let κ be a regular cardinal > ω1 and ν be an ordinal.
Suppose G is an Add(ω, ν)-generic filter over V .

Then, in V [G ], for any sufficiently large regular cardinal λ, there is a club
Z ⊆ Pκ(Hλ) such that M ∩ V ∈ V for any M ∈ Z ∩ IA>ω.

This lemma fails if we replace IA>ω with IAω. (Gitik)

This lemma can be proved using the covering and approximation properties
of Add(ω, ν).
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Covering and Approximation Properties

Definition (Hamkins)

Let P be a poset, and let κ be a regular uncountable cardinal.

P has the <κ-covering property if the following holds in V [G ] for any
P-generic filter G :

For any x ⊆ V with |x | < κ, there is y ∈ V with x ⊆ y and |y |V < κ.

P has the <κ-approximation property if for any P-generic filter G , we have
the following in V [G ].

For any x ⊆ V , if x ∩ y ∈ V for all y ∈ V with |y |V < κ, then x ∈ V .

Lemma (Mitchell)

Suppose ν ∈ On. Then Add(ω, ν) has the <κ-covering and <κ-approximation
properties for all regular uncountable κ.
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Proof of Key Lemma

Key Lemma

Let κ be a regular cardinal > ω1 and ν be an ordinal.
Suppose G is an Add(ω, ν)-generic filter over V .

Then, in V [G ], for any sufficiently large regular cardinal λ, there is a club
Z ⊆ Pκ(Hλ) such that M ∩ V ∈ V for any M ∈ Z ∩ IA>ω.

We work in V [G ]. Let Z be the set of all M ∈ Pκ(Hλ) such that
M ≺ ⟨Hλ,∈,HV

λ ⟩ and M ∩ κ ∈ κ.

Suppose M ∈ Z ∩ IA>ω. We show M ∩ V ∈ V . By the <ω1-approximation
property, it suffices to show that M ∩ y ∈ V for any countable y ∈ V .

Suppose y ∈ V is countable. Let ⟨Mξ | ξ < ζ⟩ (cof(ζ) > ω) be an
i.a. sequence of M. Then there is ξ < ζ such that M ∩ y ⊆ Mξ ∩ y .

By the <κ-covering property and the elementarity of M, there is N ∈ M ∩ V
such that Mξ ∩HV

λ ⊆ N and |N| < κ. Note that N ⊆ M.

Then M ∩ y ⊆ Mξ ∩ y ⊆ N ∩ y ⊆ M ∩ y . So M ∩ y = N ∩ y ∈ V . □
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SRκ ↾ IA and 2µ for uncountable µ

Question
Does SRκ ↾ IA give any bound on 2µ for an uncountable µ?

Answer is NO. In fact, SR∗
κ ↾ IA does not give any bound.

It is not hard to see that SR∗
κ ↾ IA does not give any bound on 2µ for a

regular µ ≥ κ.

Theorem 3

Assume GCH. Suppose κ is a regular cardinal > ω1, κ ∈ I [κ] and SR∗
κ ↾ IA holds.

Let µ be a regular uncountable cardinal < κ and ν be an ordinal.

Then SR∗
κ ↾ IA remains to hold in VAdd(µ,ν).
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Key Lemma for Theorem 3

As in Theorem 2, the following lemma allows us to avoid the change of Pκ(W ).

Key Lemma

Assume GCH. Let κ be a regular cardinal > ω1 such that κ ∈ I [κ].
Let µ be a regular uncountable cardinal < κ and ν be an ordinal.
Suppose G is an Add(µ, ν)-generic filter over V .

Then, in V [G ], for any sufficiently large regular cardinal λ, there is a club
Z ⊆ Pκ(Hλ) such that M ∩ V ∈ V for any M ∈ Z ∩ IA.

We need some elaborations to prove the lemma for M’s which are i.a. of
length µ. For such M, we prove the lemma by induction on λ.
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SRκ ↾ IA>ω and SCH

Question
Does SRκ ↾ IA>ω imply SCH?

Answer is NO. In fact, SR∗
κ ↾ IA>ω does not imply SCH.

Theorem 4

Suppose κ is a regular cardinal > ω1, κ ∈ I [κ], 2µ < κ for all cardinals µ with
µ+ < κ, and SR∗

κ ↾ IA>ω holds. Let ν be a measurable cardinal > κ and P be a
Prikry forcing at ν.

Then SR∗
κ ↾ IA>ω remains to hold in V P.

If 2ν > ν+ in V , then SR∗
κ ↾ IA>ω holds but SCH fails in V P.

A Prikry forcing at ν drastically changes Pκ(λ) for λ > ν, and in this case we
cannot have the same key lemma as before. But we can prove some weak
version.
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Summary and Question

Let κ be a regular cardinal > ω1.

SRκ ↾ IAω implies that λω = λ for all regular λ > κ (so 2ω ≤ κ+, and
SCH holds).

SR∗
κ ↾ IA does not give any bound on 2µ for any regular uncountable µ.

SR∗
κ ↾ IA>ω does not give any bound on 2ω.

SR∗
κ ↾ IA>ω does not imply SCH.

I do not know the answer of the following question:

Question

Does SRκ ↾ IA>ω or SR∗
κ ↾ IA>ω imply SCH at singular cardinals of uncountable

cofinality?
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