Higher Stationary Reflection and Cardinal Arithmetic

Hiroshi Sakai

Kobe University

November 19th, 2020 RIMS Set Theory Workshop 2020

1/20

Section 1

Higher Stationary Reflection

Stationary Reflection Principle

Definition (Stationary Reflection)

Let SR_{ω_1} be the following stationary reflection principle:

For any set $W\supseteq \omega_1$ and any stationary $X\subseteq \mathcal{P}_{\omega_1}(W)$, there is $R\subseteq W$ such that

- $|R| = \omega_1 \subseteq R$,
- $X \cap \mathcal{P}_{\omega_1}(R)$ is stationary in $\mathcal{P}_{\omega_1}(R)$.
- SR_{ω_1} is often called the Weak Reflection Principle (WRP).

Theorem (Foreman-Magidor-Shelah)

- **1** SR_{ω_1} holds if a supercompact cardinal is Lévy collapsed to ω_2 .
- **2** Martin's Maximum implies SR_{ω_1} .

Consequences of SR_{ω_1}

 SR_{ω_1} is known to have many interesting consequences.

Theorem ((1)–(3) Foreman-Magidor-Shelah, (4) Todorčević, (5) Shelah)

 SR_{ω_1} implies the following.

- Chang's Conjecture
- \circ NS $_{\omega_1}$ is presaturated.
- **3** All ω_1 -stationary preserving posets are semi-proper.
- $2^{\omega} \leq \omega_2.$
- Singular Cardinal Hypothesis (SCH)
- $\delta \lambda^{\omega} = \lambda$ for any regular $\lambda \geq \omega_2$.

We study consequences on cardinal arithmetic of higher analogues of $\mathrm{SR}_{\omega_1}.$

Inconsistent Higher Stationary Reflection

Definition

For a regular $\kappa \geq \omega_1$, let SR_{κ} be the following stationary reflection principle:

For any set $W \supseteq \kappa$ and any stationary $X \subseteq \mathcal{P}_{\kappa}(W)$, there is $R \subseteq W$ such that

- $|R| = \kappa \subseteq R$,
- $X \cap \mathcal{P}_{\kappa}(R)$ is stationary in $\mathcal{P}_{\kappa}(R)$.

 SR_{κ} is inconssistent for $\kappa > \omega_1$.

Theorem (Feng-Magidor, Foreman-Magidor, Shelah-Shioya)

 SR_{κ} fails for any regular cardinal $\kappa > \omega_1$.

On the other hand, the restriction of SR_κ to stationary sets consisting of internally approachable sets is consistent.

Internally Approachable Sets

Definition (Internally approachable sets)

Let M be a set and ρ be a regular cardinal.

- For a limit ordinal ζ , M is **internally approachable (i.a.) of length** ζ if there is a \subseteq -increasing sequence $\langle M_{\xi} \mid \xi < \zeta \rangle$ such that
 - $\bigcup_{\xi < \zeta} M_{\xi} = M,$ $|M_{\xi}| \xi < \zeta' \in M \text{ for all } \zeta' < \zeta.$
- M is **i.a.** if M is i.a. of length ζ for some ζ .
- M is i.a. of cofinality ρ if M is i.a. of length ζ for some ζ with $cof(\zeta) = \rho$.

Definition

- IA := $\{M \mid M \text{ is i.a.}\}.$
- $IA_{\omega} := \{M \mid M \text{ is i.a. of cofinality } \omega\}.$
- $IA_{>\omega} := \{M \mid M \text{ is i.a. of cofinality } > \omega\}.$
- IA_{ω} and $IA_{>\omega}$ is somewhat similar to $Cof(\omega)$ and $Cof(>\omega)$, respectively.

Stationarity of IA

Fact

Suppose κ is a regular uncountable cardinal, and λ is a regular cardinal $\geq \kappa$.

- $\mathcal{P}_{\kappa}(\mathcal{H}_{\lambda}) \cap IA$ is stationary in $\mathcal{P}_{\kappa}(\mathcal{H}_{\lambda})$.
- $\mathcal{P}_{\omega_1}(\mathcal{H}_{\lambda}) \cap \mathrm{IA}_{\omega}$ is club in $\mathcal{P}_{\omega_1}(\mathcal{H}_{\lambda})$.
- If $\kappa > \omega_1$, then $\mathcal{P}_{\kappa}(\mathcal{H}_{\lambda}) \cap IA_{>\omega}$ is stationary in $\mathcal{P}_{\kappa}(\mathcal{H}_{\lambda})$.
- If $\kappa > \omega_1$, then $\mathcal{P}_{\kappa}(\mathcal{H}_{\lambda}) \setminus IA$ is stationary.

Restriction of Higher Stationary Reflection to IA

Let C be one of IA, IA_{ω} and $IA_{>\omega}$.

Definition

For a regular $\kappa \geq \omega_1$, let $SR_{\kappa} \upharpoonright C$ be the following:

For any regular $\lambda \geq \kappa$ and any stationary $X \subseteq \mathcal{P}_{\kappa}(\mathcal{H}_{\lambda}) \cap \mathcal{C}$, there is $R \subseteq \mathcal{H}_{\lambda}$ such that

- $|R| = \kappa \subseteq R$,
- $X \cap \mathcal{P}_{\kappa}(R)$ is stationary in $\mathcal{P}_{\kappa}(R)$.

Definition

For a regular $\kappa \geq \omega_1$, let $SR_{\kappa}^* \upharpoonright C$ be the following:

For any regular $\lambda \geq \kappa$ and any stationary $X \subseteq \mathcal{P}_{\kappa}(\mathcal{H}_{\lambda}) \cap \mathcal{C}$, there is $R \subseteq \mathcal{H}_{\lambda}$ such that

- $|R| = \kappa \subseteq R$, and R is i.a. of length κ ,
- $X \cap \mathcal{P}_{\kappa}(R)$ is stationary in $\mathcal{P}_{\kappa}(R)$.

Basic facts

Fact

- \circ SR $_{\omega_1} \Leftrightarrow SR_{\omega_1} \upharpoonright IA$.

Theorem (Foreman-Magidor-Shelah)

For a regular uncountable cardinal κ , if a supercompact cardinal $> \kappa$ is Lévy collapsed to κ^+ , then $SR_{\kappa}^* \upharpoonright IA$ holds.

We study consequences of these higher stationary reflection principles on cardinal arithmetic.

Section 2

Higher Stationary Reflection and Cardinal Arithmetic

Power of ω and Question

- Recall that SR_{ω_1} implies that $\lambda^{\omega} = \lambda$ for all regular cardinal $\geq \omega_2$.
- By the same argument, we can prove the following.

Theorem 1

Let κ be a regular uncountable cardinal.

Then $SR_{\kappa} \upharpoonright IA_{\omega}$ implies that $\lambda^{\omega} = \lambda$ for all regular $\lambda \geq \kappa^{+}$ (so $2^{\omega} \leq \kappa^{+}$, and SCH holds above κ).

Question

- **①** Does $SR_{\kappa} \upharpoonright IA$ give any bound on 2^{μ} for an uncountable μ ?
- **2** Does $SR_{\kappa} \upharpoonright IA_{>\omega}$ give any bound on 2^{ω} ?
- **3** Does $SR_{\kappa} \upharpoonright IA_{>\omega}$ imply SCH?

We give negative answers to all these questions.

$SR_{\kappa} \upharpoonright IA_{>\omega}$ and 2^{ω}

Question

Does $SR_{\kappa} \upharpoonright IA_{>\omega}$ give any bound on 2^{ω} ?

Answer is NO. In fact, $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ does not give any bound:

For a regular cardinal μ and $\nu \in \mathrm{On}$, $\mathrm{Add}(\mu, \nu)$ is the $<\mu$ -closed poset adding ν -many subsets of μ , i.e. a $<\mu$ -support product of ν -many copies of $^{<\mu}2$.

Theorem 2

Suppose κ is a regular cardinal $> \omega_1$, and $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ holds. Let $\nu \in On$. Then $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ remains to hold in $V^{Add(\omega,\nu)}$.

Key Lemma for Theorem 2

One difficulty to prove the preservation of SR arises from the fact that $\mathcal{P}_{\kappa}(W)$ changes after forcing. The following lemma allows us to avoid this difficulty.

Key Lemma

Let κ be a regular cardinal $> \omega_1$ and ν be an ordinal. Suppose G is an $\mathrm{Add}(\omega,\nu)$ -generic filter over V.

Then, in V[G], for any sufficiently large regular cardinal λ , there is a club $Z \subseteq \mathcal{P}_{\kappa}(\mathcal{H}_{\lambda})$ such that $M \cap V \in V$ for any $M \in Z \cap \mathrm{IA}_{>\omega}$.

- This lemma fails if we replace $IA_{>\omega}$ with IA_{ω} . (Gitik)
- This lemma can be proved using the covering and approximation properties of $Add(\omega, \nu)$.

Covering and Approximation Properties

Definition (Hamkins)

Let $\mathbb P$ be a poset, and let κ be a regular uncountable cardinal.

• \mathbb{P} has **the** $<\kappa$ -covering **property** if the following holds in V[G] for any \mathbb{P} -generic filter G:

For any
$$x \subseteq V$$
 with $|x| < \kappa$, there is $y \in V$ with $x \subseteq y$ and $|y|^V < \kappa$.

• \mathbb{P} has **the** $<\kappa$ -approximation property if for any \mathbb{P} -generic filter G, we have the following in V[G].

For any
$$x \subseteq V$$
, if $x \cap y \in V$ for all $y \in V$ with $|y|^V < \kappa$, then $x \in V$.

Lemma (Mitchell)

Suppose $\nu \in \mathrm{On}$. Then $\mathrm{Add}(\omega, \nu)$ has the $<\kappa$ -covering and $<\kappa$ -approximation properties for all regular uncountable κ .

Proof of Key Lemma

Key Lemma

Let κ be a regular cardinal $> \omega_1$ and ν be an ordinal. Suppose G is an $\mathrm{Add}(\omega,\nu)$ -generic filter over V.

Then, in V[G], for any sufficiently large regular cardinal λ , there is a club $Z \subseteq \mathcal{P}_{\kappa}(\mathcal{H}_{\lambda})$ such that $M \cap V \in V$ for any $M \in Z \cap \mathrm{IA}_{>\omega}$.

- We work in V[G]. Let Z be the set of all $M \in \mathcal{P}_{\kappa}(\mathcal{H}_{\lambda})$ such that $M \prec \langle \mathcal{H}_{\lambda}, \in, \mathcal{H}_{\lambda}^{V} \rangle$ and $M \cap \kappa \in \kappa$.
- Suppose $M \in Z \cap IA_{>\omega}$. We show $M \cap V \in V$. By the $<\omega_1$ -approximation property, it suffices to show that $M \cap y \in V$ for any countable $y \in V$.
- Suppose $y \in V$ is countable. Let $\langle M_{\xi} \mid \xi < \zeta \rangle$ $(\operatorname{cof}(\zeta) > \omega)$ be an i.a. sequence of M. Then there is $\xi < \zeta$ such that $M \cap y \subseteq M_{\xi} \cap y$.
- By the $<\kappa$ -covering property and the elementarity of M, there is $N \in M \cap V$ such that $M_{\xi} \cap \mathcal{H}_{\lambda}^{V} \subseteq N$ and $|N| < \kappa$. Note that $N \subseteq M$.
- Then $M \cap y \subseteq M_{\xi} \cap y \subseteq N \cap y \subseteq M \cap y$. So $M \cap y = N \cap y \in V$.

$SR_{\kappa} \upharpoonright IA$ and 2^{μ} for uncountable μ

Question

Does $\mathrm{SR}_\kappa \upharpoonright \mathrm{IA}$ give any bound on 2^μ for an uncountable μ ?

Answer is NO. In fact, $SR_{\kappa}^* \upharpoonright IA$ does not give any bound.

• It is not hard to see that $SR_{\kappa}^* \upharpoonright IA$ does not give any bound on 2^{μ} for a regular $\mu \geq \kappa$.

Theorem 3

Assume GCH. Suppose κ is a regular cardinal $> \omega_1$, $\kappa \in I[\kappa]$ and $SR_{\kappa}^* \upharpoonright IA$ holds. Let μ be a regular uncountable cardinal $< \kappa$ and ν be an ordinal.

Then $SR^*_{\kappa} \upharpoonright IA$ remains to hold in $V^{Add(\mu,\nu)}$.

Key Lemma for Theorem 3

As in Theorem 2, the following lemma allows us to avoid the change of $\mathcal{P}_{\kappa}(W)$.

Key Lemma

Assume GCH. Let κ be a regular cardinal $> \omega_1$ such that $\kappa \in I[\kappa]$. Let μ be a regular uncountable cardinal $< \kappa$ and ν be an ordinal. Suppose G is an $\mathrm{Add}(\mu,\nu)$ -generic filter over V.

Then, in V[G], for any sufficiently large regular cardinal λ , there is a club $Z \subseteq \mathcal{P}_{\kappa}(\mathcal{H}_{\lambda})$ such that $M \cap V \in V$ for any $M \in Z \cap IA$.

• We need some elaborations to prove the lemma for M's which are i.a. of length μ . For such M, we prove the lemma by induction on λ .

$SR_{\kappa} \upharpoonright IA_{>\omega}$ and SCH

Question

Does $SR_{\kappa} \upharpoonright IA_{>\omega}$ imply SCH?

Answer is NO. In fact, $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ does not imply SCH.

Theorem 4

Suppose κ is a regular cardinal $> \omega_1, \kappa \in I[\kappa], 2^{\mu} < \kappa$ for all cardinals μ with $\mu^+ < \kappa$, and $SR_{\kappa}^+ \upharpoonright IA_{>\omega}$ holds. Let ν be a measurable cardinal $> \kappa$ and $\mathbb P$ be a Prikry forcing at ν .

Then $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ remains to hold in $V^{\mathbb{P}}$.

- If $2^{\nu} > \nu^+$ in V, then $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ holds but SCH fails in $V^{\mathbb{P}}$.
- A Prikry forcing at ν drastically changes $\mathcal{P}_{\kappa}(\lambda)$ for $\lambda > \nu$, and in this case we cannot have the same key lemma as before. But we can prove some weak version.

Summary and Question

Let κ be a regular cardinal $> \omega_1$.

- $SR_{\kappa} \upharpoonright IA_{\omega}$ implies that $\lambda^{\omega} = \lambda$ for all regular $\lambda > \kappa$ (so $2^{\omega} \le \kappa^+$, and SCH holds).
- $SR_{\kappa}^* \upharpoonright IA$ does not give any bound on 2^{μ} for any regular uncountable μ .
- $\mathrm{SR}^*_\kappa \upharpoonright \mathrm{IA}_{>\omega}$ does not give any bound on 2^ω .
- $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ does not imply SCH.

I do not know the answer of the following question:

Question

Does $SR_{\kappa} \upharpoonright IA_{>\omega}$ or $SR_{\kappa}^* \upharpoonright IA_{>\omega}$ imply SCH at singular cardinals of uncountable cofinality?